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Abstract

We describe a simple and highly e$cient and accurate radiative transfer technique for computing
bidirectional re#ectance of a macroscopically #at scattering layer composed of nonabsorbing or weakly
absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to
be homogeneous and optically semi-in"nite, and the bidirectional re#ection function (BRF) is found by
a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact solution of the
radiative transfer equation, the re#ection function thus obtained fully obeys the fundamental physical laws of
energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation
"eld, it is by far the fastest numerical approach available and can be used as an ideal input for Monte
Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the
e!ects of packing density and coherent backscattering are currently neglected, they can also be incor-
porated. The FORTRAN implementation of the technique is available on the World Wide Web at
http://www.giss.nasa.gov/&crmim/brf.html and can be applied to a wide range of remote sensing, engineer-
ing, and biophysical problems. We also examine the potential e!ect of ice crystal shape on the bidirectional
re#ectance of #at snow surfaces and the applicability of the Henyey}Greenstein phase function and the
d-Eddington approximation in calculations for soil surfaces. ( 1999 Elsevier Science Ltd. All rights
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1. Introduction

Many remote sensing, engineering, and biophysical applications rely on accurate knowledge of
the bidirectional re#ection function (BRF) of layers composed of discrete, randomly positioned
scattering particles (e.g., Refs. [1}46]). Theoretical computations of BRFs for plane-parallel
particulate layers are usually reduced to solving the radiative transfer equation (RTE) using one of
the existing exact or approximate techniques. Since some semi-empirical approximate approaches
such as the Hapke model [13] are notorious for their low accuracy, crude violation of the energy
conservation law, and ability to produce unphysical results [28,31], the use of numerically exact
solutions of RTE has gained justi"ed popularity. For example, the computation of BRFs for
particulate layers with macroscopically #at surfaces in Refs. [5,17,19}22] is based on the
adding}doubling technique [47,48], while Refs. [9,10] employ the discrete ordinate method [49].
BRF computations for layers with undulated (macroscopically rough) surfaces are more complic-
ated and often may have to rely on time-consuming Monte Carlo procedures. This approach is
especially ine$cient for optically thick, weakly absorbing media (e.g., snow and desert surfaces at
visible wavelengths) since a photon may undergo many internal scattering events before it exits the
medium or is absorbed. However, particulate layers with undulated surfaces can often be represent-
ed as collections of locally #at tilted facets characterized by the BRF found from the traditional
plane-parallel RTE. In this way the Monte Carlo procedure could be used only to evaluate the
e!ects of surface shadowing and multiple surface re#ections, thereby bypassing the time-consuming
ray tracing inside the medium and providing a great saving of CPU time.

A further saving of computer resources can be achieved by using a more e$cient technique for
solving the plane-parallel RTE for a semi-in"nite medium than the adding/doubling and discrete
ordinate methods. Since many natural and arti"cial particulate layers can be considered optically
semi-in"nite and homogeneous, one can "nd the BRF directly by solving the Ambartsumian's
nonlinear integral equation [50] using a simple iterative technique [51,52]. In this way, the
computation of the internal radiation "eld is avoided (cf. Refs. [47}49]) and the computer code
becomes highly e$cient and very accurate and compact. In the following sections, we discuss in
detail numerical aspects and the computer implementation of this technique, examine the applica-
bility of the Henyey}Greenstein phase function and the d-Eddington approximation in BRF and
#ux calculations for soil surfaces, and describe sample applications demonstrating the potential
e!ect of ice crystal shape on the bidirectional re#ectance of #at snow surfaces. The last section
summarizes the results of the paper and outlines further potential improvements of the model.

2. Computational technique

We assume that the scattering layer is optically semi-in"nite, has a macroscopically #at surface,
and is composed of randomly distributed and randomly oriented particles of arbitrary shape. For
simplicity, we ignore polarization e!ects and use intensity as the only physical characteristic of
light. This so-called scalar approximation is not necessarily good for Rayleigh scattering [53,54],
but appears to be su$ciently accurate for particles with sizes comparable to and larger than the
wavelength [55]. To describe the geometry of light scattering, we use a right-handed spherical
coordinate system with the z-axis directed along the outward normal to the surface (Fig. 1). The
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Fig. 1. Spherical coordinates specifying the direction of light propagation. The zenith and azimuth angles of the incident
beam are 0

0
'p/2 and u

0
"0, respectively.

direction of light propagation is speci"ed by the couple (u,u), where u"!cos 0, 03[03,1803] is
the zenith angle, and u3[03, 3603] is the azimuth angle. The azimuth angle is measured in the
clock-wise direction when looking in the positive z direction. Note that u(0 for upwelling
radiation and u'0 for downwelling radiation. We also de"ne k"DuD. The surface is illuminated by
a beam of unpolarized light incident in the direction (k

0
, u

0
"0). The intensity of the re#ected

radiation is given by

I(!k, u)"k
0
R(k,k

0
, u)F, (1)

where R(k,k
0
,u) is the bidirectional re#ection function and nF is the incident #ux per unit area

perpendicular to the incident beam. We ignore the e!ects of packing density, coherent backscatter-
ing, and shadow hiding (see Section 5) and "nd the re#ection function as a numerically exact
solution of the conventional radiative transfer equation [50,56]. Speci"cally, we expand R(k,k

0
,u)

in a Fourier series in azimuth,

R(k,k
0
, u)"R0(k,k

0
)#2

m.!9

+
m/1

Rm(k,k
0
)cosmu (2)

and solve numerically the Ambartsumian's nonlinear integral equation [50,51]
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where - is the single-scattering albedo and Pm(k,k@) are Fourier components of the phase
function:

P(k,k@,u!u@)"P0(k,k@)#2
m.!9

+
m/1

Pm(k,k@)cosm(u!u@). (4)

The upper summation limit in Eq. (2) is chosen such that the absolute numerical accuracy of the
Fourier expansion of the re#ection function is better than a small prede"ned number e (e.g.,
e"10~4).

The Fourier components of the phase function are given by

Pm(k,k@)"(!1)m
s.!9

+
s/m

a
s
Ps

m0
(k)Ps

m0
(k@), (5)

where Ps
mn

(x) are generalized spherical functions [57,58] closely related to associate Legendre
functions (Section 3.2) and a

s
are expansion coe$cients appearing in the standard expansion of the

phase function P(#) in Legendre polynomials P
s
(x)"Ps

00
(x):

P(#)"
s.!9

+
s/0

a
s
P
s
(cos #), a

0
,1, (6)

where # is the scattering angle and s
.!9

is chosen such that all expansion coe$cients with s's
.!9

are smaller than 0.1e. Note that m
.!9

4s
.!9

and we assume the following standard normalization
of the phase function:

1
2 P

p

0

P(#)sin#d#"1. (7)

If the expansion coe$cients a
s
are known, then one can easily compute the Fourier components of

the phase function via Eq. (5) and "nally solve Eq. (3) using the method of simple iterations.
It has been found that the method of simple iterations works very well for all m'0. Further-

more, convergence is reasonably fast for m"0 provided that the particles are absorbing (-(1).
However, iterations converge very slowly or even may diverge for nonabsorbing or weakly
absorbing particles (1!-@1) [51]. It has been proved mathematically that this behavior is
explained by the nonuniqueness of solutions of Eq. (3) [59]. To ameliorate this convergence
problem, Dlugach and Yanovitskij [51] suggested to modify the Rm(k,k

0
) value after each iteration

by enforcing the so-called Sobolev}van de Hulst relation

i(!k)"2P
1

0

R0(k,k
0
)i(k

0
)k

0
dk

0
. (8)

The function i(u) is the solution of the equation

i(u)(1!ku)"
-
2P

`1

~1

i(u@)P0(u, u@) du@, (9)
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in which the so-called di!usion exponent k is found by satisfying the normalization condition

-
2P

`1

~1

i(u) du"1. (10)

After Eq. (3) is solved for each m, the evaluation of the Fourier series of Eq. (2) "nalizes the
process of computing the re#ection function for any k, k

0
, and u. This function can then be used to

calculate the re#ected intensity for any directions of illumination and re#ection and to "nd the
plane, A

P
(k

0
), and the spherical, A

S
, albedos:
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Note that the BRF thus computed satis"es the fundamental principle of reciprocity:

R(k,k
0
,u)"R(k

0
,k,u). (13)

Furthermore, since i($k),1 if -"1, enforcing Eq. (8) ensures energy conservation for a semi-
in"nite nonabsorbing medium by rendering the plane and spherical albedos equal to 1 [cf. Eqs. (8),
(11), and (12)].

3. Numerical aspects and computer codes

In this section we discuss numerical aspects and a FORTRAN implementation of the technique
brie#y outlined in the previous section. All computer procedures described are openly available on
the World Wide Web at http://www.giss.nasa.gov/&crmim/brf.html.

3.1. Legendre expansion of the phase function

The widely used Henyey}Greenstein phase function and its Legendre expansion coe$cients are
given by the following simple formulas:

P(#)"
1!g2

(1!2gcos##g2)3@2
, g3[!1,1], (14)

a
s
"(2s#1)gs. (15)

Note that

g"Scos#T, (16)

where
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1
2P
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P(#)cos# d(cos#)"
1
3

a
1

(17)
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is the asymmetry parameter of the phase function. Similarly, for the often used double-peaked
Henyey}Greenstein phase function [60]

P(#)"f
1!g2

1
(1!2g

1
cos##g2

1
)3@2

#(1!f )
1!g2

2
(1!2g

2
cos##g2

2
)3@2

(18)

with a positive g
1

and a negative g
2
, the Legendre expansion coe$cients are given by

a
s
"fa

s1
#(1!f )a

s2
, (19)

where a
s1

and a
s2

are given by Eq. (15) with g"g
1

and g
2
, respectively.

The code for computing the expansion coe$cients for polydisperse, homogeneous spherical
particles is based on the standard Lorenz}Mie theory and the approach described in Refs. [61,62].
The code allows one to select one of the following "ve size distributions:

f The modi"ed gamma distribution:

n(r)"const]ra expA!
arc
crc

c
B. (20)

f The log normal distribution:

n(r)"const]r~1 expA!
(ln r!ln r

g
)2

2 ln2 p
g
B. (21)

f The power law distribution:

n(r)"G
const]r~3, r

1
4r4r

2
,

0 otherwise.
(22)

f The gamma distribution:

n(r)"const]r(1~3b)@b expA!
r
abB, b3(0, 0.5). (23)

f The modi"ed power law distribution:

n(r)"G
const, 04r4r

1
,

const](r/r
1
)a, r

1
4r4r

2
,

0, r
2
(r.

(24)

The constant for each size distribution is chosen such that the size distribution satis"es the
standard normalization

P
r.!9

r.*/

n(r) dr"1. (25)

Mathematically, particle radii in the modi"ed gamma, log normal, and gamma distributions
may extend to in"nity. However, a "nite r

.!9
must be chosen in actual computer calculations.
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There are two practical interpretations of a truncated size distribution. First, r
.!9

can be increased
until the scattering characteristics converge within some numerical accuracy (note that convergent
r
.!9

values for the modi"ed gamma and log normal distributions can be unrealistically large for
small c or large p

g
[63]). In this case the converged truncated size distribution is numerically

equivalent to the distribution with r
.!9

"R. Second, a truncated distribution can be considered
a speci"c distribution with scattering characteristics di!erent from those for the distribution with
r
.!9

"R. Similar considerations apply to the parameter r
.*/

whose mathematical value for the
modi"ed gamma, log normal, and gamma distributions is zero, but in practice can be any number
smaller than r

.!9
. Note that for the gamma distribution with r

.*/
"0 and r

.!9
"R, a and

b coincide with the e!ective radius r
%&&

and e!ective variance l
%&&

, respectively, as de"ned by Hansen
and Travis [47].

The numerical integration of scattering characteristics over a size distribution is achieved by
subdividing the entire interval [r

.*/
, r

.!9
] of particle radii into a number n of equal subintervals and

applying a Gaussian quadrature formula with k division points to each subinterval. Note that
n and/or k should be increased until the required numerical accuracy is reached.

An e$cient technique for computing the Legendre expansion coe$cients for polydispersions of
randomly oriented, homogeneous, rotationally symmetric nonspherical particles is described in
detail in Ref. [64]. This technique is based on the ¹-matrix approach [65] and an analytical
method for averaging scattering characteristics over particle orientations [66].

The computation of the Legendre expansion coe$cients for phase functions obtained with other
numerical methods or measured experimentally is based on the numerical evaluation of the
integral

a
s
"

2s#1
2 P

p

0

d# sin#P(#)P
s
(cos #), (26)

which is a direct consequence of Eq. (6) and the orthogonality relation for Legendre poly-
nomials. The integral is replaced by a Gaussian quadrature and an interpolation procedure is
employed to "nd the phase function at Gaussian division points using the table of precomputed or
measured phase function values. The Legendre polynomials are computed using the recurrence
relation and the initial conditions given by Eqs. (27) and (28) below with m"0. We have found
that spline interpolation usually provides quite acceptable results with the exception of
phase functions having very sharp features [67], such as the phase function for hexagonal ice
crystals. The presence of the strong 223 and 463 halos in this latter case [68] necessitates the use of
simple linear interpolation. Furthermore, the d-function transmission peak in the ray-tracing phase
function for hexagonal ice crystals must be convolved with the Fraunhofer pattern, as described in
Ref. [69].

3.2. Fourier components of the phase function

The right-hand side of Eq. (5) is often written in terms of associated Legendre functions
Pm
s
(x)"(!i)m[(s#m)!/(s!m)!]1@2Ps

0m
(x), i"J!1, rather than generalized spherical functions.

It is well known, however, that the numerical computation of associated Legendre functions with
large m and s is unstable and leads to over#ows [70]. On the other hand, the computation of the
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generalized spherical functions via the upward recurrence relation [57,58]

J(s#1)2!m2Ps`1
m0

(x)"(2s#1)xPs
m0

(x)!Js2!m2Ps~1
m0

(x) (27)

and initial conditions

Pm~1
m0

(x)"0, Pm
m0

(x)"(2i)~mS
(2m)!
m!m!

(1!x2)m@2, (28)

is numerically stable and e$cient. Furthermore, the concept of generalized spherical functions
naturally appears in the theory of polarized radiative transfer [5,58], the Lorenz}Mie theory [62],
and the ¹-matrix method [66] and provides a natural and appealing link between these theories.

3.3. Iterative solution of the Ambartsumian's equation

By using a quadrature formula on the interval k3[0, 1] with n division points k
p
and weights w

p
,

we convert integral equation (3) into a system of n]n nonlinear algebraic equations:
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)
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)
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) (29)

for the unknowns Rm(k
p
,k

q
), p, q"1,2, n. This system is solved by simple iterations using

Rm
*0+

(k
p
, k

q
)"

-
4(k

p
#k

q
)
Pm(!k

p
,k

q
) (30)

as the initial approximation. The iterations converge very fast for m'0 as well as for m"0 and
-(0.8. However, the convergence rate becomes very slow when m"0 and 1!-@1.

To accelerate convergence, we use a procedure similar to those developed in Refs. [51,52] and
based on the Sobolev}van de Hulst relation. Speci"cally, after each iteration, we compute the
quantities (cf. Eq. (8))

*
*j+

(k
p
)"i(!k

p
)!2

n
+
q/1

w
q
R0

*j+
(k

p
,k

q
)k

q
i(k

q
), (31)

where j numbers iterations. We then improve R0
*j+

(k
p
, k

q
) by replacing it with

R0
*j+

(k
p
, k

q
)#i[*

*j+
(k

p
)i(k

q
)#i(k

p
)*

*j+
(k

q
)], (32)
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where i is an appropriately chosen constant. This improved approximation is substituted
in Eq. (31) to compute a new set of quantities *

*j+
(k

p
), which are used again to further improve

R0
*j+

(k
p
, k

q
) via Eq. (32), and this procedure is repeated until

max
p/1,2,n

D*
*j+

(k
p
)D(0.1e, (33)

where e is the prede"ned absolute accuracy of computations. The improved jth iteration R0
*j+

(k
p
, k

q
)

is then substituted in the right-hand side of Eq. (29) to obtain the ( j#1)th approximation
R0

*j`1+
(k

p
, k

q
), which is again improved using Eqs. (31) and (32), and this entire process is repeated

until

max
p,q/1,2, n

DR0
*j`1+

(k
p
, k

q
)!R0

*j+
(k

p
, k

q
)D(e. (34)

de Rooij [52] suggested to use the same value i"0.5 in all cases. We have found, however, that
this value may cause divergence when -(0.995 and that i should be single-scattering-albedo
speci"c. After having performed many numerical experiments, we have chosen the following
i values:

i"G
0.5 for -50.995,

0.1 for 0.954-(0.995,

0.05 for 0.84-(0.95.

(35)

The use of reciprocity (Eq. (13)) reduces the number of unknowns in Eq. (29) by a factor of
2N/(N#1) and provides a signi"cant saving of computer resources.

This numerical procedure renders only re#ection function values R(k
p
,k

q
,u) at the division points

of the quadrature formula. BRF values for k and k
0

not coinciding with one of the quadrature
nodes must be found by numerical interpolation/extrapolation, which may result in lower accuracy
than for the BRF values at the quadrature nodes. Therefore, the number of quadrature division
points n should be increased until the desired numerical accuracy for all required BRF values is
achieved. The accuracy can be signi"cantly improved and n can be decreased by using the
separation of the "rst-order scattering procedure (Section 3.7).

3.4. Computation of i(k)

Taking into account the normalization

1
2 P

`1

~1

P0(u, u@) du@"1, (36)

we derive from Eqs. (9) and (10)

k"
2(1!-)

-:`1
~1

ui(u) du
. (37)
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Replacing the integrals in Eqs. (9), (10), and (37) by respective quadrature sums, we obtain

i($k
p
)"

-
2(1Gkk

p
)

n
+
q/1

w
q
[i(k

q
)P0($k

p
, k

q
)#i(!k

q
)P0($k

p
,!k

q
)], (38)

-
2

n
+

p/1

w
p
[i(k

p
)#i(!k

p
)]"1, (39)

k"
2(1!-)

-+n
p/1

w
p
k
p
[i(k

p
)!i(!k

p
)]

. (40)

Substituting k"J1!-, i(k
p
)"2, and i(!k

p
)"1/2 as the initial approximation, we calculate

the right-hand side of Eq. (38) to obtain the next approximation for i(k
p
) and i(!k

p
). Since this

approximation may not satisfy the normalization of Eq. (39), we improve i(k
p
) and i(!k

p
) by

dividing them by

-
2

n
+

p/1

w
p
[i(k

p
)#i(!k

p
)]. (41)

This improved approximation satis"es Eq. (39) and is used to compute the next approximation for
k via Eq. (40). The new k, i(k

p
), and i(!k

p
) values are substituted in the right-hand side of Eq. (38)

to obtain the next approximation for i(k
p
) and i(!k

p
), and so on. The process is continued until

i(k
p
) and i(!k

p
) converge within 0.1e. Note that this scheme is di!erent from that described in

Ref. [51]. Dlugach and Yanovitskij [51] compute i($k) using the expansion coe$cients as and
a method of continued fractions. We have found, however, that the use of the expansion coe$cients
of the original phase function to compute i($k) con#icts with the use of the renormalized phase
function (Section 3.6 below) in Eq. (29) and may lead to divergence of the iterative solution of
Eq. (29) for highly anisotropic phase functions. Our new procedure for computing i($k) uses the
already renormalized phase function and produces numerically stable and convergent results.

3.5. Numerical integration

The Gauss quadrature formula (e.g., Ref. [71]) has the highest algebraic degree of precision (i.e.,
a formula with n nodes is exact for all polynomials of degree 2n!1 and lower) and is traditionally
used in radiative transfer calculations to numerically evaluate integrals on the interval [0,1] (e.g.,
Refs. [72}74]). A signi"cant disadvantage of this quadrature is that the largest node is always
smaller than 1, and if BRF values for normal incidence and/or re#ection are required, then one
must use an extrapolation procedure. Unfortunately, extrapolation often produces poor numerical
accuracy (e.g., see discussion on pp. 210 and 211 of Ref. [52]) and necessitates the use of the
Gaussian quadrature formula with a large number of nodes. We have found that a more e$cient
approach is to use the so-called Markov quadrature formula (Chapter 9.2 of Ref. [71]) with one
prede"ned node at k"1. This formula still has the highest possible algebraic precision and is exact
for all polynomials of degree 2n!2 and lower. Furthermore, it allows one to avoid the use of the
extrapolation procedure or the so-called extra points (Ref. [47] and L.D. Travis, personal
communication). Multiple numerical tests have shown that the Gaussian and Markov quadratures
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Table 1
Division points and weights of the Markov quadrature formula on the
interval [0,1] with n"30

k w

1 0.00160587785254 0.00411899413797
2 0.00844194880403 0.00954444032329
3 0.02066193363616 0.01487343889309
4 0.03813469699711 0.02004018939073
5 0.06066914207658 0.02498751843953
6 0.08801845813989 0.02966112217483
7 0.11988302768490 0.03400976899322
8 0.15591374708438 0.03798580509944
9 0.19571586157012 0.04154566451353

10 0.23885329363337 0.04465034297146
11 0.28485342210352 0.04726582410455
12 0.33321226086401 0.04936345167913
13 0.38339998090611 0.05092024336491
14 0.43486671538603 0.05191914244132
15 0.48704858415304 0.05234920462588
16 0.53937387177272 0.05220571795295
17 0.59126929137078 0.05149025437772
18 0.64216626567319 0.05021065253237
19 0.69150715642309 0.04838093181641
20 0.73875137391194 0.04602113875159
21 0.78338129966059 0.04315712726339
22 0.82490795730055 0.03982027524838
23 0.86287636938624 0.03604714041164
24 0.89687054110030 0.03187905880664
25 0.92651801527194 0.02736168939988
26 0.95149394561648 0.02254450560005
27 0.97152463085599 0.01748022010489
28 0.98639040253929 0.01222402012888
29 0.99592721636071 0.00683100534121
30 1.00000000000000 0.00111111111111

with a number of nodes n larger than about 10 have essentially the same numerical accuracy for
intermediate k and k

0
values, whereas the Markov quadrature produces much better accuracy for

k and/or k
0

equal to 1. Since the CPU time consumption in solving Eq. (29) is proportional to n3,
the use of the Markov quadrature with a reduced number of nodes results in a signi"cant saving of
computer resources. We have developed a simple, e$cient, and highly accurate FORTRAN
procedure for computing the nodes and weights of the Markov quadrature formula with an
arbitrary n. Table 1exempli"es the performance of the procedure and lists the nodes and weights of
the Markov quadrature with n"30.

The direct application of a quadrature formula to the integration k-interval [0,1] is a standard
approach in the radiative transfer theory (e.g., Refs. [47}49,51,55,61,72}74]). However, it provides
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poor sampling of zenith angles close to 03 and, as multiple numerical tests have shown, causes
a very slow convergence of R0(1, 1) with increasing n for particles large compared to the
wavelength. This happens even when the Markov quadrature is used and no extrapolation is
involved or when the Gaussian quadrature is used along with an extra point at k"k

0
"1. On the

other hand, convergence with increasing n is fast for k(1 and k
0
(1. We have found that a very

e$cient way of avoiding excessive n values in radiative transfer computations is to apply the
Gaussian quadrature to the interval [0,p/2] of zenith angle values. Since

P
1

0

f (k) dk"P
n@2

0

f (cos0)sin0 d0, (42)

we easily derive the following expressions for the respective division points and weights in Eq. (29):

k
p
"cosA

p
4
X

p
#

p
4B, w

p
"=

p
sinA

p
4
X

p
#

p
4B, p"1,2, n, (43)

where X
p
and=

p
are Gaussian nodes and weights, respectively, on the interval [!1,#1]. These

division points provide a much better sampling of zenith angles close to 03 and a much higher
convergence rate for R0(1, 1) with increasing n than the Gaussian or the Markov quadrature
formula applied to the interval [0, 1] of k values.

3.6. Renormalization of the phase function

Although analytically the zeroth Fourier component of the phase function must be normalized
according to Eq. (36), the numerical evaluation of the left-hand side of Eq. (36) usually produces
k-dependent numbers not equal to 1:

1
2

n
+
q/1

w
q
[P0(k

p
, k

q
)#P0(k

p
,!k

q
)]"d

p
O1. (44)

This results in a deviation of the `numericala single-scattering albedo from its actual value and,
for nonabsorbing or weakly absorbing media, can lead to an e$cient `photon gainaor `photon
lossa. A direct adverse consequence is a serious violation of energy conservation and poor
numerical accuracy. Hansen [55] developed a so-called renormalization procedure, which numer-
ically enforces the normalization of Eq. (36) by slightly modifying the P0(k

p
, k

q
) values. We have

found that the renormalization procedure of Ref. [55] produces accurate BRFs in most cases, but
not always. Therefore, we have developed an alternative renormalization procedure, which is
simpler than that of Ref. [55] and appears to be more stable. Speci"cally, we multiply the quantities
P0(k

p
, k

p
), p"1,2, n by the correction factors

e
p
"1#

2!2d
p

w
p
P0(k

p
, k

p
)
, p"1,2, n. (45)

This correction makes the left-hand side of Eq. (44) equal to 1 for any p and is applied to higher
Fourier components of the phase function as well. Since it a!ects only the forward-scattering values
of the phase function, it has negligible e!ect on the bidirectional re#ection function while
numerically ensuring energy conservation.
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3.7. Separation of the xrst-order-scattering contribution to the reyection function

For large scattering particles with highly variable phase functions and for k and k
0

signi"cantly
smaller than 1, one may need very many Fourier terms in Eq. (2) in order to accurately represent
the re#ection function. On the other hand, it is also known that with k and k

0
approaching zero the

only signi"cant contribution to the re#ection function comes from photons scattered only once
[56]. This suggests the idea of subtracting the "rst-order-scattering contribution from all Fourier
components of the re#ection function, thereby greatly reducing the number of numerically
signi"cant Fourier components, evaluating the right-hand side of Eq. (2), interpolating (if neces-
sary) this slowly varying high-order-scattering part of the re#ection function, and "nally adding the
exact single-scattering contribution [75]. The latter contribution can be easily computed analyti-
cally for the scattering angle # corresponding to a speci"c combination of k, k

0
, and u values and

given by

cos#"!kk
0
#J1!k2J1!k2

0
cosu. (46)

In other words, the total re#ection function is represented in the form

R(k,k
0
, u)"R

1
(k,k

0
, u)#

m1

+
m/0

(2!d
m0

)[Rm(k,k
0
)!Rm

1
(k, k

0
)] cosmu, (47)

where d
mm{

is the Kronecker delta,

R
1
(k, k

0
,u)"

-
4(k#k

0
)
P(#), (48)

Rm
1
(k,k

0
)"

-
4(k#k

0
)
Pm(!k, k

0
) (49)

and m
1
@m

.!9
[48]. The term in square brackets on the right-hand side of Eq. (47) is a smooth

function of k and k
0
and can be accurately interpolated even when the number of quadrature nodes

is relatively small, while P(#) is computed via Eqs. (6) and (46).

4. Computations and discussion

4.1. Soil surfaces

Table 2 lists parameters of four soil particle models used in the computations described below.
We assume the standard gamma size distribution of Eq. (23) with an e!ective radius of
a"r

%&&
"10 lm and an e!ective variance of b"l

%&&
"0.1. This e!ective radius is typical of soil

particles (e.g., Ref. [76]). The four values of the refractive index m"m
r
#im

i
are also typical of soil

particles at the visible wavelength j"0.63 lm considered [76]. The single scattering properties of
the four soil particle models were computed assuming the spherical particle shape and using the
Lorenz}Mie theory. (It should be noted, however, that the Lorenz}Mie theory does not necessarily
provide the best representation of soil particle phase functions [77}80]). Table 2 gives the
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Table 2
Soil particle models

Model a (lm) b m
r

m
i

- Scos#T s
.!9

A
S

A
S
(HG) A

S
(HH)

1 10 0.1 1.55 0.001 0.85404 0.83752 641 0.1399 0.1382 0.1655
2 10 0.1 1.55 0.002 0.76137 0.86568 644 0.0727 0.0716 0.0889
3 10 0.1 1.55 0.003 0.69923 0.88582 645 0.0472 0.0464 0.0588
4 10 0.1 1.55 0.004 0.65646 0.90054 646 0.0345 0.0339 0.0435

respective values of the single-scattering albedo -, asymmetry parameter of the phase function
Scos#T, the number of terms in the Legendre decomposition of the phase function s

.!9
(Eq. (6)),

and the spherical albedo A
S
. Note the signi"cant decrease of - and increase of Scos#T with

increasing imaginary part of the refractive index. The solid curves in the upper panel of Fig. 2 show
the respective Lorenz}Mie phase functions, while the dotted curves show the asymmetry-
parameter-equivalent Henyey}Greenstein phase functions (Eq. (14)).

Table 2 also gives spherical albedo values computed using the equivalent Henyey}Greenstein
phase function, A

S
(HG), and the simple approximate formula

A
S
(HH)"(1!s)/(1#s) (50)

derived by Hovenier and Hage [81], where

s"S
1!-

1!-Scos#T
(51)

is the so-called similarity parameter [56]. It is seen that the A
S
(HG) values are quite close to the

exact ones, while the Hovenier and Hage approximation provides somewhat lower accuracy.
Solid curves in the upper panel of Fig. 3 depict the plane albedo A

P
as a function of the cosine of

the illumination zenith angle k
0
. Note that A

P
is determined only by the 0th component of the

re#ection function via Eq. (11) and, as a consequence, the computation of the upper panel of Fig. 3
using 50 quadrature division points took less than 2 s of CPU time on an IBM RISC model 397
workstation. We also computed the plane albedo using the asymmetry-parameter-equivalent
Henyey}Greenstein phase functions and the d-Eddington approximation [82]. The ratios of these
approximate plane albedo values relative to the exact ones are shown by the dotted and solid
curves, respectively, in the bottom panel of Fig. 3. Not surprisingly, plane albedos decrease with
increasing the imaginary part of the refractive index and, thus, decreasing the single-scattering
albedo. Both the d-Eddington approximation and the asymmetry-parameter-equivalent Henyey}
Greenstein phase function produce signi"cant errors, especially for grazing illumination. Using the
asymmetry-parameter-equivalent Henyey}Greenstein phase function overestimates the plane al-
bedo for small k

0
and underestimates it for k

0
close to 1, which is naturally explained by the

scattering-angle pattern of the phase function di!erences (upper panel of Fig. 2). The errors increase
signi"cantly with increasing absorption. This can be explained by the increasing contribution of
photons scattered only once and by the large di!erences in the single-scattering phase functions.
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Fig. 2. Phase functions for soil particle models 1}4 (upper panel) and snow particle models 1}3. Dotted curves in the
upper panel show asymmetry-parameter-equivalent Henyey}Greenstein phase functions.
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Fig. 3. Upper panel: plane albedo versus k
0

for soil particle models 1}4. Lower panel: plane albedos computed using the
d-Eddington approximation (solid curves) and asymmetry-parameter-equivalent Henyey}Greenstein phase functions
(dotted curves) relative to the exact values for soil particle models 1}4.
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Fig. 4. Left column: re#ected intensity versus k and u for soil particle model 1. Middle column: the same but for the
asymmetry-parameter-equivalent Henyey}Greenstein phase function. Right column: the ratio of the intensities shown in
the middle and left columns. The four values of the cosine of the illumination zenith angle k

0
"0.9, 0.7, 0.4, and 0.1 are

indicated by the yellow stars in the right column. The azimuth angle of the incident radiation is zero.
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The much better accuracy of the A
S
(HG) values in Table 2 can be explained by cancellation of the

plane albedo errors after integrating over k
0

in Eq. (12).
Fig. 4 shows the angular distribution of the re#ected intensity computed for soil particle model

1 using the exact Lorenz}Mie phase function and its Henyey}Greenstein counterpart and assum-
ing F"1 in Eq. (1). The computations for the exact phase function used 100 quadrature nodes and
took about 25 min of CPU time including the Lorenz}Mie computation of the Legendre expansion
coe$cients, the solution of Eq. (3), and interpolation. The computations for the equivalent
Henyey}Greenstein phase function used 50 quadrature nodes and took less than 3 min.

Two obvious features of the re#ected intensity distributions shown in the left column are the
backscattering enhancement (k"k

0
, u"1803) caused by the glory in the Lorenz}Mie phase

function (upper panel of Fig. 2) and the strong near-forward scattering for the cases of grazing and
near-grazing incidence caused by the phase function peak at small scattering angles. The re#ec-
tance patterns for the equivalent Henyey}Greenstein phase function exhibit only the second
feature, which is explained by the absence of the backscattering phase function peak similar to the
glory. The right column of Fig. 4 shows that BRF errors caused by the use of the equivalent
Henyey}Greenstein phase function can be very large and can exceed a factor of 20 at backscatter-
ing geometries and a factor of 3 at near-forward-scattering geometries. These errors can be
unequivocally attributed to the phase function di!erences. Thus, Fig. 4 makes a strong case against
using approximate phase functions in BRF computations for semi-in"nite particulate media.

4.2. Snow surfaces

In this section we describe BRF computations for three snow particle models summarized in
Table 3.The assumed wavelength is j"0.65 lm. Model 1 particles have highly irregular, random-
fractal shapes introduced in Ref. [83]; model 2 particles are homogeneous ice spheres; and model 3
particles are regular hexagonal ice crystals with a length-to-diameter ratio of 2. The nonspherical
model 1 and 3 particles are randomly oriented in three-dimensional space. For all three models we
used the same power law distribution of radii or projected-area-equivalent-sphere radii (Eq. (22))
with an e!ective radius of 50 lm and an e!ective variance of 0.2. The respective phase functions
were computed using the ray-tracing technique [83] coupled with the Kirchho! approximation
[69] for models 1 and 3 and the Lorenz}Mie theory for model 2. They are shown in the lower panel
of Fig. 2 and exhibit large di!erences exceeding an order of magnitude at some scattering angles.
The resulting di!erences in the asymmetry parameter are also signi"cant (Table 3). As discussed in
Ref. [84], the phase functions of models 1 and 3 may represent limiting cases of highly distorted and

Table 3
Snow particle models

Model Shape r
%&&

(lm) l
%&&

m
r

m
i

- Scos#T s
.!9

1 Irregular 50 0.2 1.311 0 1 0.7524 2000
2 Spherical 50 0.2 1.311 0 1 0.8860 1948
3 Hexagonal 50 0.2 1.311 0 1 0.8117 2000
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Fig. 5. Re#ected intensity versus k and u for snow particle models 1, 2, and 3. The four values of the cosine of the
illumination zenith angle k

0
"0.9, 0.7, 0.4, and 0.1 are indicated by the yellow stars. The azimuth angle of the incident

radiation is zero.
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pristine ice crystals, respectively. Since water ice is essentially nonabsorbing at visible wavelengths,
the single-scattering, plane, and spherical albedos for all three models are equal to unity.

Fig. 5 shows the re#ected intensities for the three snow particle models, while Fig. 6 depicts the
ratios 2/1, 3/1, and 3/2 of intensities for the respective models. It is obvious that the shape of the

Fig. 6. As in Fig. 4, but for ratios of re#ected intensities.

428 M.I. Mishchenko et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 63 (1999) 409}432



scattering particles has a profound e!ect on the re#ectance of #at snow surfaces. Although radiance
di!erences between the di!erent models are relatively small at nearly normal incidence (k

0
"0.9),

they signi"cantly increase with decreasing k
0

and result in intensity ratios smaller than 0.2 and
larger than 3 (cf. Ref. [84]). This is a direct consequence of the increasing relative contribution of
the "rst-order scattering to the re#ection function and the large phase function di!erences.
Hexagonal snow crystals (model 3) produce the most structured radiance "eld dominated by the
backscattering peak and the primary (223) and secondary (463) halos (two lower panels in the right
column of Fig. 5). These features clearly show up in the 3/1 and 3/2 intensity ratios (Fig. 6). The
spherical ice particles produce a noticeable enhancement of intensity caused by the rainbow. This
feature is especially well seen in the 2/1 ratio. The radiance "eld produced by the featureless phase
function of irregular snow crystals (model 1) is by far the least structured (left column of Fig. 5).
These results emphasize the importance of accurate treatment of single-scattering phase functions
for realistic snow grain models.

5. Conclusions

We have described in detail an e$cient technique for computing bidirectional re#ectance of
semi-in"nite discrete random media based on an exact numerical solution of the radiative transfer
equation. This technique results in a very compact and fast computer code and produces BRFs
which fully comply with reciprocity and energy conservation. The high e$ciency and accuracy of
the technique make far less tempting the use of approximations such as the d-Eddington approxi-
mation, the asymmetry-parameter-equivalent Henyey}Greenstein phase function, and the trunc-
ation of the phase function [73] and provide an ideal tool for testing the accuracy of approximate
approaches [81,85]. Our sample computations for #at soil and snow surfaces have clearly
demonstrated the limited applicability of approximate treatments of the single-scattering phase
function in BRF modeling.

Since we considered only nonabsorbing or weakly absorbing media, we ignored the opposition
e!ect caused by the so-called shadow hiding [1]. Other factors ignored in the model are the e!ects
of polarization [53}55], packing density [35,41,86}91], and coherent backscattering [29,30,32,38,
43,92]. However, they can be incorporated in a rather straightforward manner, as described, e.g., in
Refs. [26}28,52,93}95]. This is the subject of our current research. An equally challenging problem
of macroscopic surface roughness [8,12,19,24,46,96] can be addressed by convolving BRFs computed
as described in this paper with a Monte Carlo procedure handling multiple surface re#ections and
surface shadowing. As pointed out in the introduction, this approach avoids time-consuming ray
tracing inside a nonabsorbing or weakly absorbing, optically semi-in"nite medium and provides
a great saving of computer resources. The ultimate challenge is to take into account the e!ects of
the discontinuous nature of light scattering in densely packed discrete random media [31,35,97],
but this requires the development of a much more sophisticated approach.
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ERRATUM

Equation (43) should read as follows:
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